reading nccl

以如下 nccl 版本为例分析

  • pytorch/pytorch:1.13.1-cuda11.6-cudnn8-runtime
  • pytorch 1.13, cuda 11.6.2, nccl 2.14.3
1
python -c "import torch;print(torch.cuda.nccl.version())"

rdma 和网络相关知识

  1. https://www.doc.ic.ac.uk/~jgiceva/teaching/ssc18-rdma.pdf, rdma tutorial
  2. https://www.openfabrics.org/images/eventpresos/workshops2013/IBUG/2013_UserDay_Thur_1400_Bob-Russell-programming-concepts.pdf, ofa rdma program, 非常好, 五星推荐
  3. https://blog.zhaw.ch/icclab/infiniband-an-introduction-simple-ib-verbs-program-with-rdma-write/, 非常好
  4. https://insujang.github.io/2020-02-09/introduction-to-programming-infiniband/, qp 状态转换流程
  5. https://www.rdmamojo.com/2012/05/05/qp-state-machine/, qp 状态详述
  6. https://arthurchiao.art/blog/linux-net-stack-implementation-rx-zh, linux rx 原理及内核实现
  7. https://support.huawei.com/enterprise/zh/doc/EDOC1100197616/3dfff4ec, HPC 集群 mlnx 网卡巡检
  8. https://support.huawei.com/enterprise/zh/doc/EDOC1100197616/37b637af, HPC 集群交换机 roce 流量信息巡检

缩写解释

  • CA: channel adapter, 即 rdma (infiniband) 网卡; HCA, host channel adapter
  • RoCE: rdma over Converged Ethernet; rdma 的一种高性价比实现 (对于云厂商来说, 一般而言只要替换支持 RoCE 的网卡即可, 传输/交换网络设备不需要更换, 即可支持业务层 rdma)
  • mlnx ofed: ib 驱动
  • rdma: remote direct memory access, 远程直接访问内存
  • rdma program
    • qp: queue pair, 包括 send queue, recv queue; Rtr, ready to receive; Rts, ready to send; qp 状态机; qp 可以理解为 rdma 中的 client
    • cq: completion queue, 用于获取 send/recv 结果
    • mr: memory region, rdma 可操作的 memory region; rkey, 用于远程访问 mr 的 key; lkey, 用于本地读取 mr 的 key
    • pd: protect domain, 用于关联 mr
    • wr: work request

nccl net

net.h, ncclNet 里边相当于网络接口定义, 例如定义了 ncclNetIsend 等接口

而这些接口的具体又会有 netSocketIsend 与 netIBIsend 的实现,在如下两个对象中

  • ncclNetSocket
  • ncclNetIb

net 整体流程概述

socket server

  1. listen

send

  1. connect
  2. send check
  3. send
  4. test

recv

  1. accept
  2. recv check
  3. recv
  4. test

nccl net ib

https://github.com/Mellanox/nv_peer_memory
https://download.nvidia.com/XFree86/Linux-x86_64/470.42.01/README/nvidia-peermem.html, This module, originally maintained by Mellanox on GitHub, is now included with the NVIDIA Linux GPU driver

  1. net ib 相比与 net socket 的优势在于 net ib 通过 ibverbs api, 实现了 rdma (当然前提是主机上有能支持 rdma 的网卡); rdma 通过网卡直接读写远端的内存 (HOST MEM); 也就是达到了所谓的 OS bypass/CPU offload 效果, 能极大的提升通过网络传输数据的效率
  2. 如果安装了 nv_peer_mem mod, net ib 可以通过网卡直接读写远端的 GPU MEM (DEV MEM); 另外高版本 (例如 470) 的 gpu driver 自带了 nvidia-peermem mod, 可以替代 nv_peer_mem 提供 GPU Direct RDMA 功能

net ib 整体流程概述

  • ib connect, send check / ib accept, recv check

在这个阶段, 主要是发送方与接收方通过 socket 完成 rdma 通信初始化工作, 具体如 qp 初始化

ib connect/ib accept

  • recv/send

在这个阶段, 主要是接收方将待接收数据的 mem addr 通过 fifo 数据结构 rdma 写入到发送方; 随后发送方根据 fifo 数据结构, 将数据 rdma 写入到接收方指示的 mem addr

ib recv/ib send

socket server

  1. listen: 监听 bootstrap 网卡端口, 启动 socket server

send

  1. connect: 创建 pd/cq (comm->verbs), mr (comm->fifo), qp (comm->qps); 最终将 qpInfo (包括 fifo addr, fifo rkey, qp 等信息) 通过 socket 发送到 receiver
  2. send check: 通过 socket 接收 receiver 返回的 qpInfo; 使用 receiver qpInfo 完成 sender qp (本端 qp) 的状态转移; 可以理解为建立 sender qp 与 receiver qp 的连接 (Rtr, Rts); 通过 socket 发送 1 (ready) 到 receiver; send comm ready
  3. send: ibv_post_send, 往 qp 的 send queue 发 wr (cp 会通知是否完成); 发送 fifo 中的 ncclIbSendFifo slot; 如果 slot ready, sender 根据 ncclIbSendFifo 中 receiver 写入的 MEM 地址, 直接将待发送的 data 写入到 receiver 指示的 MEM 地址
  4. test: ibv_poll_cq, 从 cq 中获取已完成的 wr, 判断发送请求是否完成

recv

  1. accept: 接收 sender 的 qpInfo (包括 sender 的 fifo addr, fifo rkey, qp 等信息); 创建 pd/cq (rComm->verbs), mr (rComm->remFifo.elems), qp (rComm->qps); 使用 sender qpInfo 完成 receiver qp (本端 qp) 的状态转移; 最终将 qpInfo (包括 fifo addr, fifo rkey, qp 等信息) 通过 socket 发送到 sender
  2. recv check: 接收 1 (ready); recv comm ready
  3. recv: ibv_post_recv 往 qp 的 recv queue 发 wr (cq 会通知是否完成); ncclIbPostFifo, 将 fifo 信息 (receiver 准备接收数据的 MEM 地址, rkey 等信息) rdma 到 sender fifo
  4. test: ibv_poll_cq, 从 cq 中获取已完成的 wr, 判断接收请求是否完成

nccl recv 流程说明

交由 rdma 操作的 MEM 需要先 reg 为 memory region (mr), reg 动作在 recvProxyConnect 方法中执行

1
NCCLCHECK(ncclNetRegMr(comm, resources->netRecvComm, resources->buffers[p], resources->buffSizes[p], NCCL_NET_MAP_DEV_MEM(map, buffs[p]) ? NCCL_PTR_CUDA : NCCL_PTR_HOST, &resources->mhandles[p]));

随后执行 recvProxyProgress 方法, 涉及到网络通信的, 最终通过 ncclNetIrecv 方法执行接收数据的实现; ncclNetIrecv 在 net ib 中的实现为 ncclIbIrecv

nccl 流程说明

nccl 完整通信实现看下来的机制大致是

  1. nccl group 启动
  2. nccl proxy service 启动
  3. 通信算子 entry 加入 ncclTask 队列
  4. group 提交通信算子 entry 到 proxy
  5. proxy 使用通信算子对应的具体实现来完成参数传递

c++ 代码较为难读 … 先大致理解如上

nccl ib 相关环境变量说明

https://docs.nvidia.com/deeplearning/nccl/archives/nccl_2143/user-guide/docs/env.html
https://www.rdmamojo.com/2013/01/12/ibv_modify_qp/

RoCE

  1. NCCL_SOCKET_IFNAME: 指定 ib bootstrap 网卡 (socket)
  2. NCCL_IB_HCA: 指定 ib 网卡
  3. NCCL_IB_RETRY_CNT: qp.retry_cnt, A 3 bits value of the total number of times that the QP will try to resend the packets before reporting an error because the remote side doesn’t answer in the primary path
  4. NCCL_IB_TIMEOUT: qp.timeout, The minimum timeout that a QP waits for ACK/NACK from remote QP before retransmitting the packet.
  5. NCCL_IB_TC: qp.ah_attr.grh.traffic_class, traffic_class, Using this value, the originator of the packets specifies the required delivery priority for handling them by the routers
  6. NCCL_IB_GID_INDEX: qp.ah_attr.grh.sgid_index, An index in the port’s GID table that will be used to identify the originator of the packet

net_ib.cc 代码注释

net_ib.cc 代码注释, 尽量理解, 难免有误, 持续学习

https://github.com/NVIDIA/nccl/blob/v2.14.3-1/src/transport/net_ib.cc

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
/*************************************************************************
* Copyright (c) 2016-2022, NVIDIA CORPORATION. All rights reserved.
*
* See LICENSE.txt for license information
************************************************************************/

#include "nccl.h"
#include "core.h"
#include "socket.h"
#include "net.h"
#include "graph.h"
#include "utils.h"
#include "param.h"

#include <assert.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <poll.h>
#include <sys/types.h>
#include <unistd.h>
#define ENABLE_TIMER 0
#include "timer.h"

#include "ibvwrap.h"

#define MAXNAMESIZE 64
static char ncclIbIfName[MAX_IF_NAME_SIZE+1];
static union ncclSocketAddress ncclIbIfAddr;

// rdma (infiniband) 中的 memory region, 即提供给 rdma 网卡直接操作 (读/写) 的 pin memory
struct ncclIbMr {
uintptr_t addr;
int pages;
int refs;
ibv_mr *mr;
};

// ncclIbMrCache
// 维护 ib mr
struct ncclIbMrCache {
struct ncclIbMr *slots;
int capacity, population;
};

static int ncclNIbDevs = -1;

// ib 设备信息, 聚合数据结构
struct alignas(64) ncclIbDev {
pthread_mutex_t lock;
int device;
uint64_t guid;
uint8_t port;
uint8_t link;
int speed;
ibv_context* context;
int pdRefs;
ibv_pd* pd;
char devName[MAXNAMESIZE];
char* pciPath;
int realPort;
int maxQp;
struct ncclIbMrCache mrCache;
};

#define MAX_IB_PORT 15
struct userIbDev {
char devName[MAXNAMESIZE];
uint16_t port_en;
};

#define MAX_IB_DEVS 16
struct ncclIbDev ncclIbDevs[MAX_IB_DEVS];
struct userIbDev userIbDevs[MAX_IB_DEVS];
pthread_mutex_t ncclIbLock = PTHREAD_MUTEX_INITIALIZER;
static int ncclIbRelaxedOrderingEnabled = 0;

NCCL_PARAM(IbGidIndex, "IB_GID_INDEX", 0);
NCCL_PARAM(IbTimeout, "IB_TIMEOUT", 18);
NCCL_PARAM(IbRetryCnt, "IB_RETRY_CNT", 7);
NCCL_PARAM(IbPkey, "IB_PKEY", 0);
NCCL_PARAM(IbUseInline, "IB_USE_INLINE", 0);
NCCL_PARAM(IbSl, "IB_SL", 0);
NCCL_PARAM(IbTc, "IB_TC", 0);
NCCL_PARAM(IbArThreshold, "IB_AR_THRESHOLD", 8192);
NCCL_PARAM(IbPciRelaxedOrdering, "IB_PCI_RELAXED_ORDERING", 2);

pthread_t ncclIbAsyncThread;
// https://www.rdmamojo.com/2012/08/11/ibv_get_async_event/
// 这里常见错误 NET/IB : Got async event : port xxx
// 一般是 rdma 网卡 down
static void* ncclIbAsyncThreadMain(void* args) {
struct ibv_context* context = (struct ibv_context*)args;
while (1) {
struct ibv_async_event event;
if (ncclSuccess != wrap_ibv_get_async_event(context, &event)) { break; }
char *str;
if (ncclSuccess != wrap_ibv_event_type_str(&str, event.event_type)) { break; }
if (event.event_type != IBV_EVENT_COMM_EST)
WARN("NET/IB : Got async event : %s", str);
if (ncclSuccess != wrap_ibv_ack_async_event(&event)) { break; }
}
return NULL;
}

NCCL_PARAM(IbDisable, "IB_DISABLE", 0);

static ncclResult_t ncclIbGetPciPath(char* devName, char** path, int* realPort) {
char devicePath[PATH_MAX];
snprintf(devicePath, PATH_MAX, "/sys/class/infiniband/%s/device", devName);
char* p = realpath(devicePath, NULL);
if (p == NULL) {
WARN("Could not find real path of %s (%s)", devName, devicePath);
} else {
// Merge multi-port NICs into the same PCI device
p[strlen(p)-1] = '0';
// Also merge virtual functions (VF) into the same device
p[strlen(p)-3] = '0';
// And keep the real port aside (the ibv port is always 1 on recent cards)
*realPort = 0;
for (int d=0; d<ncclNIbDevs; d++) {
if (strcmp(p, ncclIbDevs[d].pciPath) == 0) (*realPort)++;
}
}
*path = p;
return ncclSuccess;
}

static int ibvWidths[] = { 1, 4, 8, 12, 2 };
static int ibvSpeeds[] = { 2500, 5000, 10000, 10000, 14000, 25000, 50000 };
static int firstBitSet(int val, int max) {
int i = 0;
while (i<max && ((val & (1<<i)) == 0)) i++;
return i;
}
static int ncclIbWidth(int width) {
return ibvWidths[firstBitSet(width, sizeof(ibvWidths)/sizeof(int)-1)];
}
static int ncclIbSpeed(int speed) {
return ibvSpeeds[firstBitSet(speed, sizeof(ibvSpeeds)/sizeof(int)-1)];
}

// Determine whether RELAXED_ORDERING is enabled and possible
static int ncclIbRelaxedOrderingCapable(void) {
int roMode = ncclParamIbPciRelaxedOrdering();
ncclResult_t r = ncclInternalError;
if (roMode == 1 || roMode == 2) {
// Query IBVERBS_1.8 API - needed for IBV_ACCESS_RELAXED_ORDERING support
r = wrap_ibv_reg_mr_iova2(NULL, NULL, NULL, 0, 0, 0);
}
return r == ncclInternalError ? 0 : 1;
}

ncclResult_t ncclIbInit(ncclDebugLogger_t logFunction) {
if (ncclParamIbDisable()) return ncclInternalError;
static int shownIbHcaEnv = 0;
if(wrap_ibv_symbols() != ncclSuccess) { return ncclInternalError; }

if (ncclNIbDevs == -1) {
pthread_mutex_lock(&ncclIbLock);
wrap_ibv_fork_init();
if (ncclNIbDevs == -1) {
ncclNIbDevs = 0;
if (ncclFindInterfaces(ncclIbIfName, &ncclIbIfAddr, MAX_IF_NAME_SIZE, 1) != 1) {
WARN("NET/IB : No IP interface found.");
return ncclInternalError;
}

// Detect IB cards
int nIbDevs;
struct ibv_device** devices;

// Check if user defined which IB device:port to use
char* userIbEnv = getenv("NCCL_IB_HCA");
if (userIbEnv != NULL && shownIbHcaEnv++ == 0) INFO(NCCL_NET|NCCL_ENV, "NCCL_IB_HCA set to %s", userIbEnv);
struct netIf userIfs[MAX_IB_DEVS];
bool searchNot = userIbEnv && userIbEnv[0] == '^';
if (searchNot) userIbEnv++;
bool searchExact = userIbEnv && userIbEnv[0] == '=';
if (searchExact) userIbEnv++;
int nUserIfs = parseStringList(userIbEnv, userIfs, MAX_IB_DEVS);

if (ncclSuccess != wrap_ibv_get_device_list(&devices, &nIbDevs)) return ncclInternalError;

for (int d=0; d<nIbDevs && ncclNIbDevs<MAX_IB_DEVS; d++) {
struct ibv_context * context;

// 打开 ib 设备
if (ncclSuccess != wrap_ibv_open_device(&context, devices[d]) || context == NULL) {
WARN("NET/IB : Unable to open device %s", devices[d]->name);
continue;
}
int nPorts = 0;
struct ibv_device_attr devAttr;
memset(&devAttr, 0, sizeof(devAttr));

// 查询 ib 设备详情
if (ncclSuccess != wrap_ibv_query_device(context, &devAttr)) {
WARN("NET/IB : Unable to query device %s", devices[d]->name);
if (ncclSuccess != wrap_ibv_close_device(context)) { return ncclInternalError; }
continue;
}

// 获取 ib 设备 port 详情
for (int port = 1; port <= devAttr.phys_port_cnt; port++) {
struct ibv_port_attr portAttr;
if (ncclSuccess != wrap_ibv_query_port(context, port, &portAttr)) {
WARN("NET/IB : Unable to query port %d", port);
continue;
}

if (portAttr.state != IBV_PORT_ACTIVE) continue; // port 不是 active 的时候会被忽略
if (portAttr.link_layer != IBV_LINK_LAYER_INFINIBAND
&& portAttr.link_layer != IBV_LINK_LAYER_ETHERNET) continue;

// check against user specified HCAs/ports
if (! (matchIfList(devices[d]->name, port, userIfs, nUserIfs, searchExact) ^ searchNot)) {
continue;
}

// NET/IB: [0] mlx5_2:0/RoCE
TRACE(NCCL_INIT|NCCL_NET,"NET/IB: [%d] %s:%d/%s ", d, devices[d]->name, port,
portAttr.link_layer == IBV_LINK_LAYER_INFINIBAND ? "IB" : "RoCE");

pthread_mutex_init(&ncclIbDevs[ncclNIbDevs].lock, NULL);
ncclIbDevs[ncclNIbDevs].device = d;
ncclIbDevs[ncclNIbDevs].guid = devAttr.sys_image_guid;
ncclIbDevs[ncclNIbDevs].port = port;
ncclIbDevs[ncclNIbDevs].link = portAttr.link_layer;
ncclIbDevs[ncclNIbDevs].speed = ncclIbSpeed(portAttr.active_speed) * ncclIbWidth(portAttr.active_width);
ncclIbDevs[ncclNIbDevs].context = context;
ncclIbDevs[ncclNIbDevs].pdRefs = 0;
ncclIbDevs[ncclNIbDevs].pd = NULL;
strncpy(ncclIbDevs[ncclNIbDevs].devName, devices[d]->name, MAXNAMESIZE);
NCCLCHECK(ncclIbGetPciPath(ncclIbDevs[ncclNIbDevs].devName, &ncclIbDevs[ncclNIbDevs].pciPath, &ncclIbDevs[ncclNIbDevs].realPort));
ncclIbDevs[ncclNIbDevs].maxQp = devAttr.max_qp;
ncclIbDevs[ncclNIbDevs].mrCache.capacity = 0;
ncclIbDevs[ncclNIbDevs].mrCache.population = 0;
ncclIbDevs[ncclNIbDevs].mrCache.slots = NULL;

// 初始化好 ib 设备信息后
// 启动 ncclIbAsyncThreadMain thread, 监听 ib 设备事件
pthread_create(&ncclIbAsyncThread, NULL, ncclIbAsyncThreadMain, context);
ncclSetThreadName(ncclIbAsyncThread, "NCCL IbAsync %2d", ncclNIbDevs);
pthread_detach(ncclIbAsyncThread); // will not be pthread_join()'d
ncclNIbDevs++;
nPorts++;
}
if (nPorts == 0 && ncclSuccess != wrap_ibv_close_device(context)) { return ncclInternalError; }
}
if (nIbDevs && (ncclSuccess != wrap_ibv_free_device_list(devices))) { return ncclInternalError; };
}
if (ncclNIbDevs == 0) {
INFO(NCCL_INIT|NCCL_NET, "NET/IB : No device found.");
} else {
char line[1024];
line[0] = '\0';
// Determine whether RELAXED_ORDERING is enabled and possible
ncclIbRelaxedOrderingEnabled = ncclIbRelaxedOrderingCapable();
for (int d=0; d<ncclNIbDevs; d++) {
snprintf(line+strlen(line), 1023-strlen(line), " [%d]%s:%d/%s", d, ncclIbDevs[d].devName,
ncclIbDevs[d].port, ncclIbDevs[d].link == IBV_LINK_LAYER_INFINIBAND ? "IB" : "RoCE");
}
line[1023] = '\0';
char addrline[SOCKET_NAME_MAXLEN+1];

// OOB 个人理解是用于辅助完成 ib 通信初始化的网卡
INFO(NCCL_INIT|NCCL_NET, "NET/IB : Using%s %s; OOB %s:%s", line, ncclIbRelaxedOrderingEnabled ? "[RO]" : "",
ncclIbIfName, ncclSocketToString(&ncclIbIfAddr, addrline));
}
pthread_mutex_unlock(&ncclIbLock);
}
return ncclSuccess;
}

ncclResult_t ncclIbDevices(int* ndev) {
*ndev = ncclNIbDevs;
return ncclSuccess;
}

// Detect whether GDR can work on a given NIC with the current CUDA device
// Returns :
// ncclSuccess : GDR works
// ncclSystemError : no module or module loaded but not supported by GPU
ncclResult_t ncclIbGdrSupport(int ibDev) {
static int moduleLoaded = -1;
if (moduleLoaded == -1) {
// nv_mem or nvidia-peermem 都能开启 GDR

// Check for the nv_peer_mem module being loaded
moduleLoaded = ((access("/sys/kernel/mm/memory_peers/nv_mem/version", F_OK) == -1) &&
// Also support the new nvidia-peermem module
(access("/sys/kernel/mm/memory_peers/nvidia-peermem/version", F_OK) == -1)) ? 0 : 1;
}
if (moduleLoaded == 0) return ncclSystemError;
return ncclSuccess;
}

// Detect whether DMA-BUF support is present in the kernel
// Returns :
// ncclSuccess : DMA-BUF support is available
// ncclSystemError : DMA-BUF is not supported by the kernel
ncclResult_t ncclIbDmaBufSupport(int dev) {
static int dmaBufSupported = -1;
if (dmaBufSupported == -1) {
ncclResult_t res;
struct ibv_pd* pd;
struct ibv_context* ctx;
ctx = ncclIbDevs[dev].context;
NCCLCHECKGOTO(wrap_ibv_alloc_pd(&pd, ctx), res, failure);
// Test kernel DMA-BUF support with a dummy call (fd=-1)
(void) wrap_direct_ibv_reg_dmabuf_mr(pd, 0ULL/*offset*/, 0ULL/*len*/, 0ULL/*iova*/, -1/*fd*/, 0/*flags*/);
// ibv_reg_dmabuf_mr() will fail with EOPNOTSUPP/EPROTONOSUPPORT if not supported (EBADF otherwise)
dmaBufSupported = (errno != EOPNOTSUPP && errno != EPROTONOSUPPORT) ? 1 : 0;
NCCLCHECKGOTO(wrap_ibv_dealloc_pd(pd), res, failure);
}
if (dmaBufSupported == 0) return ncclSystemError;
return ncclSuccess;
failure:
dmaBufSupported = 0;
return ncclSystemError;
}

static ncclResult_t GetSocketAddr(union ncclSocketAddress* addr) {
memcpy(addr, &ncclIbIfAddr, sizeof(*addr));
return ncclSuccess;
}

#define NCCL_NET_IB_MAX_RECVS 8

ncclResult_t ncclIbGetProperties(int dev, ncclNetProperties_t* props) {
props->name = ncclIbDevs[dev].devName;
props->pciPath = ncclIbDevs[dev].pciPath;
props->guid = ncclIbDevs[dev].guid;
props->ptrSupport = NCCL_PTR_HOST;
if (ncclIbGdrSupport(dev) == ncclSuccess) {
props->ptrSupport |= NCCL_PTR_CUDA; // GDR support via nv_peermem
}
if (ncclIbDmaBufSupport(dev) == ncclSuccess) {
props->ptrSupport |= NCCL_PTR_DMABUF; // GDR support via DMA-BUF
}
props->speed = ncclIbDevs[dev].speed;
props->latency = 0; // Not set
props->port = ncclIbDevs[dev].port + ncclIbDevs[dev].realPort;
props->maxComms = ncclIbDevs[dev].maxQp;
props->maxRecvs = NCCL_NET_IB_MAX_RECVS;
return ncclSuccess;
}

// We need to support NCCL_NET_MAX_REQUESTS for each concurrent receive
#define MAX_REQUESTS (NCCL_NET_MAX_REQUESTS*NCCL_NET_IB_MAX_RECVS)
static_assert(MAX_REQUESTS <= 256, "request id are encoded in wr_id and we need up to 8 requests ids per completion");

#define NCCL_IB_MAX_QPS 128

// 完成 rdma (infiniband) 需要的信息; 例如 queue pair num
struct ncclIbQpInfo {
uint32_t lid;
uint8_t ib_port;
uint8_t link_layer;
uint32_t qpn[NCCL_IB_MAX_QPS];

// For RoCE
uint64_t spn;
uint64_t iid;
enum ibv_mtu mtu;

// FIFO RDMA info
uint32_t fifoRkey;
uint64_t fifoAddr;
};

enum ncclIbCommState {
ncclIbCommStateStart = 0,
ncclIbCommStateConnect = 1,
ncclIbCommStateAccept = 3,
ncclIbCommStateSend = 4,
ncclIbCommStateRecv = 5,
ncclIbCommStateConnected = 6,
};

struct ncclIbCommStage {
enum ncclIbCommState state;
int offset;
void* buffer;
void* comm;
};

struct ncclIbHandle {
union ncclSocketAddress connectAddr; // Filled by the target
struct ncclIbCommStage stage; // Used by the other side when connecting
};

#define NCCL_NET_IB_REQ_UNUSED 0
#define NCCL_NET_IB_REQ_SEND 1
#define NCCL_NET_IB_REQ_RECV 2
#define NCCL_NET_IB_REQ_FLUSH 3

// request
struct ncclIbRequest {
struct ncclIbVerbs* verbs;
int type;
int events;
union ncclSocketAddress *addr;
int nreqs;
union {
struct {
int size;
void* data;
uint32_t lkey;
int offset;
} send;
struct {
int sizes[NCCL_NET_IB_MAX_RECVS];
} recv;
};
};

struct ncclIbVerbs {
// 设备 index
int dev;

// rdma (infiniband) 中的 protect domain
struct ibv_pd* pd; // duplicate of ncclIbDevs[dev].pd

// rdma (infiniband) 中的 completion queue
struct ibv_cq* cq;

uint64_t pad[1];

// ib request
struct ncclIbRequest reqs[MAX_REQUESTS];
};

struct ncclIbListenComm {
int dev;
struct ncclSocket sock;
struct ncclIbCommStage stage;
};

// ncclIbSendFifo
struct ncclIbSendFifo {
uint64_t addr; // 远端 mem addr
int size; // 数据大小
uint32_t rkey; // remote key, 用于 rdma

uint32_t nreqs;
uint32_t tag;
uint64_t idx;
};


struct ncclIbSendComm {
struct ncclIbVerbs verbs;
struct ncclIbSendFifo fifo[MAX_REQUESTS][NCCL_NET_IB_MAX_RECVS];
uint64_t fifoHead;
struct ncclIbRequest* fifoReqs[MAX_REQUESTS][NCCL_NET_IB_MAX_RECVS];
struct ibv_send_wr wrs[NCCL_NET_IB_MAX_RECVS+1];
struct ibv_sge sges[NCCL_NET_IB_MAX_RECVS];
struct ncclSocket sock;

int ready;
struct ibv_qp* qps[NCCL_IB_MAX_QPS];
int nqps;
struct ibv_mr* fifoMr;
};
// The SendFifo needs to be 32-byte aligned and each element needs
// to be a 32-byte multiple, so that an entry does not get split and
// written out of order when IB Relaxed Ordering is enabled
static_assert((offsetof(struct ncclIbSendComm, fifo) % 32) == 0, "ncclIbSendComm fifo must be 32-byte aligned");
static_assert((sizeof(struct ncclIbSendFifo) % 32) == 0, "ncclIbSendFifo element size must be 32-byte multiples");

struct ncclIbGpuFlush {
int enabled;
int hostMem;
struct ibv_mr* hostMr;
struct ibv_sge sge;
struct ibv_qp* qp;
};

// remote fifo 队列, 队列中的 item 为 ncclIbSendFifo
struct ncclIbRemFifo {

struct ncclIbSendFifo elems[MAX_REQUESTS][NCCL_NET_IB_MAX_RECVS];

// 队尾
uint64_t fifoTail;

uint64_t addr;
uint32_t rkey;
uint32_t flags;
struct ibv_mr* mr;
struct ibv_sge sge;
};

struct ncclIbRecvComm {
struct ncclIbVerbs verbs;
struct ncclIbRemFifo remFifo;
struct ncclSocket sock;
int ready;
struct ibv_qp* qps[NCCL_IB_MAX_QPS];
int nqps;
struct ncclIbGpuFlush gpuFlush;
};
static_assert((offsetof(struct ncclIbRecvComm, remFifo) % 32) == 0, "ncclIbSendComm fifo must be 32-byte aligned");

NCCL_PARAM(IbQpsPerConn, "IB_QPS_PER_CONNECTION", 1);

ncclResult_t ncclIbInitVerbs(int dev, struct ibv_context* ctx, struct ncclIbVerbs* verbs) {
verbs->dev = dev;

pthread_mutex_lock(&ncclIbDevs[dev].lock);
if (0 == ncclIbDevs[dev].pdRefs++) {
ncclResult_t res;
// 分配 protect domain, pd
NCCLCHECKGOTO(wrap_ibv_alloc_pd(&ncclIbDevs[dev].pd, ctx), res, failure);
if (0) {
failure:
pthread_mutex_unlock(&ncclIbDevs[dev].lock);
return res;
}
}
verbs->pd = ncclIbDevs[dev].pd;
pthread_mutex_unlock(&ncclIbDevs[dev].lock);

// 创建 completion queue
// Recv requests can generate 2 completions (one for the post FIFO, one for the Recv).
NCCLCHECK(wrap_ibv_create_cq(&verbs->cq, ctx, 2*MAX_REQUESTS*ncclParamIbQpsPerConn(), NULL, NULL, 0));
return ncclSuccess;
}

ncclResult_t ncclIbDestroyVerbs(struct ncclIbVerbs* verbs) {
ncclResult_t res;
NCCLCHECK(wrap_ibv_destroy_cq(verbs->cq));

pthread_mutex_lock(&ncclIbDevs[verbs->dev].lock);
if (0 == --ncclIbDevs[verbs->dev].pdRefs) {
NCCLCHECKGOTO(wrap_ibv_dealloc_pd(ncclIbDevs[verbs->dev].pd), res, returning);
}
res = ncclSuccess;
returning:
pthread_mutex_unlock(&ncclIbDevs[verbs->dev].lock);
return res;
}

// 创建 qp, 用于数据发送, 接收

// cq 关联到 qp
ncclResult_t ncclIbCreateQp(uint8_t ib_port, struct ncclIbVerbs* verbs, int access_flags, struct ibv_qp** qp) {
struct ibv_qp_init_attr qpInitAttr;
memset(&qpInitAttr, 0, sizeof(struct ibv_qp_init_attr));
qpInitAttr.send_cq = verbs->cq;
qpInitAttr.recv_cq = verbs->cq;

// 注意此处, NCCL 使用的是 RC 传输
qpInitAttr.qp_type = IBV_QPT_RC;

// We might send 2 messages per send (RDMA and RDMA_WITH_IMM)
qpInitAttr.cap.max_send_wr = 2*MAX_REQUESTS;
qpInitAttr.cap.max_recv_wr = MAX_REQUESTS;
qpInitAttr.cap.max_send_sge = 1;
qpInitAttr.cap.max_recv_sge = 1;
qpInitAttr.cap.max_inline_data = ncclParamIbUseInline() ? sizeof(struct ncclIbSendFifo) : 0;

// 关联 qp 到 pd, protect domain
// 也就是说 pd 包括 qp, cq
NCCLCHECK(wrap_ibv_create_qp(qp, verbs->pd, &qpInitAttr));

struct ibv_qp_attr qpAttr;
memset(&qpAttr, 0, sizeof(struct ibv_qp_attr));
// 注意此处 INIT
qpAttr.qp_state = IBV_QPS_INIT;
qpAttr.pkey_index = ncclParamIbPkey();
qpAttr.port_num = ib_port;
qpAttr.qp_access_flags = access_flags;

// 可以回顾 QP 状态转换图
NCCLCHECK(wrap_ibv_modify_qp(*qp, &qpAttr, IBV_QP_STATE | IBV_QP_PKEY_INDEX | IBV_QP_PORT | IBV_QP_ACCESS_FLAGS));
return ncclSuccess;
}

// qp 状态转换
// read to read (receive)
// qp 接收数据时, 如下为相关的环境变量
// NCCL_IB_GID_INDEX, roce only
// NCCL_IB_TC, roce only
// NCCL_IB_SL
ncclResult_t ncclIbRtrQp(struct ibv_qp* qp, uint32_t qpn, struct ncclIbQpInfo* info) {
struct ibv_qp_attr qpAttr;
memset(&qpAttr, 0, sizeof(struct ibv_qp_attr));
qpAttr.qp_state = IBV_QPS_RTR;
qpAttr.path_mtu = info->mtu;
qpAttr.dest_qp_num = qpn;
qpAttr.rq_psn = 0;
qpAttr.max_dest_rd_atomic = 1;
qpAttr.min_rnr_timer = 12;

// roce 时, 如下两个环境变量有效
// NCCL_IB_GID_INDEX
// NCCL_IB_TC
if (info->link_layer == IBV_LINK_LAYER_ETHERNET) {
qpAttr.ah_attr.is_global = 1;
qpAttr.ah_attr.grh.dgid.global.subnet_prefix = info->spn;
qpAttr.ah_attr.grh.dgid.global.interface_id = info->iid;
qpAttr.ah_attr.grh.flow_label = 0;
qpAttr.ah_attr.grh.sgid_index = ncclParamIbGidIndex();
qpAttr.ah_attr.grh.hop_limit = 255;
qpAttr.ah_attr.grh.traffic_class = ncclParamIbTc();
} else {
qpAttr.ah_attr.is_global = 0;
qpAttr.ah_attr.dlid = info->lid;
}

// NCCL_IB_SL 对于 infiniband or ethernet 都有效
qpAttr.ah_attr.sl = ncclParamIbSl();
qpAttr.ah_attr.src_path_bits = 0;
qpAttr.ah_attr.port_num = info->ib_port;

NCCLCHECK(wrap_ibv_modify_qp(qp, &qpAttr, IBV_QP_STATE | IBV_QP_AV | IBV_QP_PATH_MTU | IBV_QP_DEST_QPN | IBV_QP_RQ_PSN | IBV_QP_MAX_DEST_RD_ATOMIC | IBV_QP_MIN_RNR_TIMER));
return ncclSuccess;
}

// qp 状态转换
// read to send
// qp 发送数据时, 如下为相关的环境变量
// NCCL_IB_TIMEOUT, 注意该 env 默认值为 18, 即 timeout 时间为 1073742 usec (1.07 sec). 调整该 env 在 roce 网络丢包情况下, 对通信性能影响较大, 例如假若调整为 25, 则 timeout 时间为 137000000 usec (137 sec), 2min+
// NCCL_IB_RETRY_CNT, 注意此 env 默认值为 7, A 3 bits value of the total number of times that the QP will try to resend the packets before reporting an error because the remote side doesn't answer in the primary path
ncclResult_t ncclIbRtsQp(struct ibv_qp* qp) {
struct ibv_qp_attr qpAttr;
memset(&qpAttr, 0, sizeof(struct ibv_qp_attr));
qpAttr.qp_state = IBV_QPS_RTS;
qpAttr.timeout = ncclParamIbTimeout();
qpAttr.retry_cnt = ncclParamIbRetryCnt();
qpAttr.rnr_retry = 7; // rnr retry infinite
qpAttr.sq_psn = 0;
qpAttr.max_rd_atomic = 1;
NCCLCHECK(wrap_ibv_modify_qp(qp, &qpAttr, IBV_QP_STATE | IBV_QP_TIMEOUT | IBV_QP_RETRY_CNT | IBV_QP_RNR_RETRY | IBV_QP_SQ_PSN | IBV_QP_MAX_QP_RD_ATOMIC));
return ncclSuccess;
}

// 使用 socket 通信辅助 ib 完成初始化
// 所以要启动 socket server
ncclResult_t ncclIbListen(int dev, void* opaqueHandle, void** listenComm) {
struct ncclIbListenComm* comm;
NCCLCHECK(ncclCalloc(&comm, 1));
struct ncclIbHandle* handle = (struct ncclIbHandle*) opaqueHandle;
static_assert(sizeof(struct ncclIbHandle) < NCCL_NET_HANDLE_MAXSIZE, "ncclIbHandle size too large");
memset(handle, 0, sizeof(struct ncclIbHandle));
comm->dev = dev;
comm->sock.asyncFlag = 1; /* nonblocking socket is required by network communication. */
NCCLCHECK(GetSocketAddr(&comm->sock.addr));
NCCLCHECK(ncclSocketListen(&comm->sock));
memcpy(&handle->connectAddr, &comm->sock.addr, sizeof(union ncclSocketAddress));
*listenComm = comm;
return ncclSuccess;
}

// IB 连接
// 使用 socket 发送本端 ib 相关信息
ncclResult_t ncclIbConnect(int dev, void* opaqueHandle, void** sendComm) {
struct ncclIbHandle* handle = (struct ncclIbHandle*) opaqueHandle;
enum ncclSocketState conState;
struct ncclIbCommStage* stage = &handle->stage;
struct ncclIbSendComm* comm = (struct ncclIbSendComm*)stage->comm;
*sendComm = NULL;

if (stage->state == ncclIbCommStateConnect) goto ib_connect_check;
if (stage->state == ncclIbCommStateSend) goto ib_send;
if (stage->state != ncclIbCommStateStart) {
WARN("Error: trying to connect already connected sendComm");
return ncclInternalError;
}

NCCLCHECK(ncclIbMalloc((void**)&comm, sizeof(struct ncclIbSendComm)));
NCCLCHECK(ncclSocketInit(&comm->sock, &handle->connectAddr, NULL, 1));
stage->comm = comm;
stage->state = ncclIbCommStateConnect;
NCCLCHECK(ncclSocketConnect(&comm->sock));

ib_connect_check:
/* since ncclSocketConnect is async, we must check if connection is complete */
NCCLCHECK(ncclGetSocketState(&comm->sock, &conState));
if (conState == ncclSocketConnecting) {
/* expect user to call again */
return ncclSuccess;
} else if (conState == ncclSocketError) {
return ncclRemoteError;
}

// IB Setup
struct ibv_context* ctx;
ctx = ncclIbDevs[dev].context;
NCCLCHECK(ncclIbInitVerbs(dev, ctx, &comm->verbs));
uint8_t ib_port;
ib_port = ncclIbDevs[dev].port;
comm->nqps = ncclParamIbQpsPerConn();

// 默认创建 1 qp
for (int q=0; q<comm->nqps; q++) {
NCCLCHECK(ncclIbCreateQp(ib_port, &comm->verbs, IBV_ACCESS_REMOTE_WRITE, comm->qps+q));
}

// Send my QP Info to receiver through the socket. Hope this won't block.
struct ibv_port_attr portAttr;
NCCLCHECK(wrap_ibv_query_port(ctx, ib_port, &portAttr));
struct ncclIbQpInfo qpInfo;
qpInfo.ib_port = ib_port;
for (int q=0; q<comm->nqps; q++) qpInfo.qpn[q] = comm->qps[q]->qp_num;
qpInfo.mtu = portAttr.active_mtu;

// Prepare my fifo
NCCLCHECK(wrap_ibv_reg_mr(&comm->fifoMr, comm->verbs.pd, comm->fifo, sizeof(struct ncclIbSendFifo)*MAX_REQUESTS*NCCL_NET_IB_MAX_RECVS, IBV_ACCESS_LOCAL_WRITE|IBV_ACCESS_REMOTE_WRITE|IBV_ACCESS_REMOTE_READ));
qpInfo.fifoRkey = comm->fifoMr->rkey;
qpInfo.fifoAddr = (uint64_t)comm->fifo;

// RoCE support
qpInfo.lid = portAttr.lid;
qpInfo.link_layer = portAttr.link_layer;
if (qpInfo.link_layer == IBV_LINK_LAYER_INFINIBAND) { // IB
for (int q=0; q<comm->nqps; q++)
INFO(NCCL_NET,"NET/IB: Dev %d Port %d qpn %d mtu %d LID %d", dev, ib_port, qpInfo.qpn[q], qpInfo.mtu, qpInfo.lid);
} else { // RoCE
union ibv_gid gid;
NCCLCHECK(wrap_ibv_query_gid(ctx, ib_port, ncclParamIbGidIndex(), &gid));
qpInfo.spn = gid.global.subnet_prefix;
qpInfo.iid = gid.global.interface_id;
for (int q=0; q<comm->nqps; q++)
INFO(NCCL_NET,"NET/IB: Dev %d Port %d qpn %d mtu %d GID %ld (%lX/%lX)", dev, ib_port, qpInfo.qpn[q], qpInfo.mtu, ncclParamIbGidIndex(), qpInfo.spn, qpInfo.iid);
}

stage->state = ncclIbCommStateSend;
stage->offset = 0;
NCCLCHECK(ncclIbMalloc((void**)&stage->buffer, sizeof(qpInfo)));
memcpy(stage->buffer, &qpInfo, sizeof(qpInfo));

ib_send:
NCCLCHECK(ncclSocketProgress(NCCL_SOCKET_SEND, &comm->sock, stage->buffer, sizeof(qpInfo), &stage->offset));
if (stage->offset != sizeof(qpInfo))
return ncclSuccess;

free(stage->buffer);
stage->state = ncclIbCommStateConnected;
*sendComm = comm;
return ncclSuccess;
}

NCCL_PARAM(IbGdrFlushDisable, "GDR_FLUSH_DISABLE", 0);

// 接收对端 ib 信息
ncclResult_t ncclIbAccept(void* listenComm, void** recvComm) {
struct ncclIbListenComm* lComm = (struct ncclIbListenComm*)listenComm;
struct ncclIbCommStage* stage = &lComm->stage;
struct ncclIbRecvComm* rComm = (struct ncclIbRecvComm*)stage->comm;
*recvComm = NULL;

if (stage->state == ncclIbCommStateAccept) goto ib_accept;
if (stage->state == ncclIbCommStateRecv) goto ib_recv;
if (stage->state == ncclIbCommStateSend) goto ib_send;
if (stage->state != ncclIbCommStateStart) {
WARN("Listencomm in unknown state %d\n", stage->state);
return ncclInternalError;
}

NCCLCHECK(ncclIbMalloc((void**)&rComm, sizeof(struct ncclIbRecvComm)));
stage->comm = rComm;
stage->state = ncclIbCommStateAccept;
NCCLCHECK(ncclSocketInit(&rComm->sock, NULL, lComm->sock.abortFlag, 1));

ib_accept:
NCCLCHECK(ncclSocketAccept(&rComm->sock, &lComm->sock));
if (rComm->sock.fd == -1)
return ncclSuccess;

struct ncclIbQpInfo remQpInfo;
stage->state = ncclIbCommStateRecv;
stage->offset = 0;
NCCLCHECK(ncclIbMalloc((void**)&stage->buffer, sizeof(remQpInfo)));
ib_recv:
NCCLCHECK(ncclSocketProgress(NCCL_SOCKET_RECV, &rComm->sock, stage->buffer, sizeof(remQpInfo), &stage->offset));
if (stage->offset != sizeof(remQpInfo))
return ncclSuccess;

/* copy back the received info */
memcpy(&remQpInfo, stage->buffer, sizeof(struct ncclIbQpInfo));

// IB setup
struct ibv_context* ctx;
uint8_t ib_port;
ctx = ncclIbDevs[lComm->dev].context;
ib_port = ncclIbDevs[lComm->dev].port;
struct ibv_port_attr portAttr;
NCCLCHECK(wrap_ibv_query_port(ctx, ib_port, &portAttr));
union ibv_gid gid;
NCCLCHECK(wrap_ibv_query_gid(ctx, ib_port, ncclParamIbGidIndex(), &gid));

// QP Creation
NCCLCHECK(ncclIbInitVerbs(lComm->dev, ctx, &rComm->verbs));
rComm->nqps = ncclParamIbQpsPerConn();
for (int q=0; q<rComm->nqps; q++) {
NCCLCHECK(ncclIbCreateQp(ib_port, &rComm->verbs, IBV_ACCESS_REMOTE_WRITE, rComm->qps+q));
}

// Adjust the MTU
remQpInfo.mtu = (enum ibv_mtu)std::min(remQpInfo.mtu, portAttr.active_mtu);

// Setup QP
for (int q=0; q<rComm->nqps; q++) {
struct ibv_qp* qp = rComm->qps[q];
NCCLCHECK(ncclIbRtrQp(qp, remQpInfo.qpn[q], &remQpInfo));
NCCLCHECK(ncclIbRtsQp(qp));
}

// Retain remote fifo info and prepare my RDMA ops
rComm->remFifo.rkey = remQpInfo.fifoRkey;
rComm->remFifo.addr = remQpInfo.fifoAddr;
NCCLCHECK(wrap_ibv_reg_mr(&rComm->remFifo.mr, rComm->verbs.pd, &rComm->remFifo.elems, sizeof(struct ncclIbSendFifo)*MAX_REQUESTS*NCCL_NET_IB_MAX_RECVS, IBV_ACCESS_REMOTE_WRITE|IBV_ACCESS_LOCAL_WRITE|IBV_ACCESS_REMOTE_READ));
rComm->remFifo.sge.lkey = rComm->remFifo.mr->lkey;
if (ncclParamIbUseInline()) rComm->remFifo.flags = IBV_SEND_INLINE;

// 如果开启了 gdr flush, 则创建独立的 qp, 用于 gdr flush 通信
// Allocate Flush dummy buffer for GPU Direct RDMA
rComm->gpuFlush.enabled = (ncclIbGdrSupport(lComm->dev) == 0) && (ncclParamIbGdrFlushDisable() == 0) ? 1 : 0;
if (rComm->gpuFlush.enabled) {
NCCLCHECK(wrap_ibv_reg_mr(&rComm->gpuFlush.hostMr, rComm->verbs.pd, &rComm->gpuFlush.hostMem, sizeof(int), IBV_ACCESS_LOCAL_WRITE));
rComm->gpuFlush.sge.addr = (uint64_t)&rComm->gpuFlush.hostMem;
rComm->gpuFlush.sge.length = 1;
rComm->gpuFlush.sge.lkey = rComm->gpuFlush.hostMr->lkey;
NCCLCHECK(ncclIbCreateQp(ib_port, &rComm->verbs, IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_READ, &rComm->gpuFlush.qp));
struct ncclIbQpInfo localQpInfo;
localQpInfo.lid=portAttr.lid;
localQpInfo.link_layer=portAttr.link_layer;
localQpInfo.ib_port=ib_port;
localQpInfo.spn=gid.global.subnet_prefix;
localQpInfo.iid=gid.global.interface_id;
localQpInfo.mtu=portAttr.active_mtu;
NCCLCHECK(ncclIbRtrQp(rComm->gpuFlush.qp, rComm->gpuFlush.qp->qp_num, &localQpInfo));
NCCLCHECK(ncclIbRtsQp(rComm->gpuFlush.qp));
}

// Fill Handle
struct ncclIbQpInfo qpInfo;
qpInfo.lid=portAttr.lid;
qpInfo.link_layer=portAttr.link_layer;
qpInfo.ib_port=ib_port;
for (int q=0; q<rComm->nqps; q++) qpInfo.qpn[q]=rComm->qps[q]->qp_num;
qpInfo.spn=gid.global.subnet_prefix;
qpInfo.iid=gid.global.interface_id;
qpInfo.mtu=remQpInfo.mtu;

stage->state = ncclIbCommStateSend;
stage->offset = 0;
if (stage->buffer) free(stage->buffer);
NCCLCHECK(ncclIbMalloc((void**)&stage->buffer, sizeof(struct ncclIbQpInfo)));
memcpy(stage->buffer, &qpInfo, sizeof(struct ncclIbQpInfo));
ib_send:
NCCLCHECK(ncclSocketProgress(NCCL_SOCKET_SEND, &rComm->sock, stage->buffer, sizeof(struct ncclIbQpInfo), &stage->offset));
if (stage->offset < sizeof(struct ncclIbQpInfo)) return ncclSuccess;

free(stage->buffer);
*recvComm = rComm;

/* reset lComm stage */
stage->state = ncclIbCommStateStart;
stage->offset = 0;
stage->comm = NULL;
stage->buffer = NULL;
return ncclSuccess;
}

// 获取 request 用于通信
ncclResult_t ncclIbGetRequest(struct ncclIbVerbs* verbs, struct ncclIbRequest** req) {
for (int i=0; i<MAX_REQUESTS; i++) {
struct ncclIbRequest* r = verbs->reqs+i;
if (r->type == NCCL_NET_IB_REQ_UNUSED) {
r->verbs = verbs;
r->events = 1;
r->addr = NULL;
*req = r;
return ncclSuccess;
}
}
WARN("NET/IB : unable to allocate requests");
*req = NULL;
return ncclInternalError;
}

// 还回 request
ncclResult_t ncclIbFreeRequest(struct ncclIbRequest* r) {
r->type = NCCL_NET_IB_REQ_UNUSED;
return ncclSuccess;
}

// ib 通信前初始化好 qp
ncclResult_t ncclSendCheck(struct ncclIbSendComm* comm) {
struct ncclIbQpInfo remQpInfo;

// 接收远端 qp info: remQpInfo -> remoteQpInfo
// Do not block on this receive, return if not ready.
int bytes = 0;
NCCLCHECK(ncclSocketProgress(NCCL_SOCKET_RECV, &comm->sock, &remQpInfo, sizeof(remQpInfo), &bytes));
if (bytes == 0) return ncclSuccess; // Try again later

NCCLCHECK(ncclSocketWait(NCCL_SOCKET_RECV, &comm->sock, &remQpInfo, sizeof(remQpInfo), &bytes));

// 修改本端 qp 信息, 进行 qp 状态转换
// 类似于本端 qp 要与对端通信 qp 的地址填入
for (int q=0; q<comm->nqps; q++) {
struct ibv_qp* qp = comm->qps[q];
// 所以如果此时 roce 网卡网络不通 (无法 ping 通 roce 网卡的 ip 地址), 那么就会出现常见错误之一 ibv_modify_qp failed with error Connection timed out
NCCLCHECK(ncclIbRtrQp(qp, remQpInfo.qpn[q], &remQpInfo));
NCCLCHECK(ncclIbRtsQp(qp));
}
comm->ready = 1;

// 使用 socket 通信,通知对端 qp 已经准备好
// Block until this is done. It *should* not block indefinitely.
NCCLCHECK(ncclSocketSend(&comm->sock, &comm->ready, sizeof(int)));

return ncclSuccess;
}

// 接收对端 ready 情况
// 等待对端 comm->ready
ncclResult_t ncclRecvCheck(struct ncclIbRecvComm* comm) {
// Do not block on this receive, return if not ready.
int bytes = 0;
NCCLCHECK(ncclSocketProgress(NCCL_SOCKET_RECV, &comm->sock, &comm->ready, sizeof(int), &bytes));
if (bytes == 0) return ncclSuccess; // Try again later

NCCLCHECK(ncclSocketWait(NCCL_SOCKET_RECV, &comm->sock, &comm->ready, sizeof(int), &bytes));
return ncclSuccess;
}

// 这放的位置有点儿突然 ...
ncclResult_t ncclIbTest(void* request, int* done, int* size);

/* DMA-BUF support */
ncclResult_t ncclIbRegMrDmaBuf(void* comm, void* data, size_t size, int type, uint64_t offset, int fd, void** mhandle) {
static_assert(offsetof(struct ncclIbSendComm, verbs) == offsetof(struct ncclIbRecvComm, verbs), "Send and recv comms must have verbs at the same offset");
assert(size > 0);

static __thread uintptr_t pageSize = 0;
if (pageSize == 0) pageSize = sysconf(_SC_PAGESIZE);

struct ncclIbVerbs* verbs = (struct ncclIbVerbs*)comm;
struct ncclIbMrCache* cache = &ncclIbDevs[verbs->dev].mrCache;
uintptr_t addr = (uintptr_t)data & -pageSize;
size_t pages = ((uintptr_t)data + size - addr + pageSize-1)/pageSize;
ncclResult_t res;
pthread_mutex_lock(&ncclIbDevs[verbs->dev].lock);
for (int slot=0; /*true*/; slot++) {
if (slot == cache->population) { // didn't find in cache
if (cache->population == cache->capacity) { // must grow cache
cache->capacity = cache->capacity < 32 ? 32 : 2*cache->capacity;
NCCLCHECKGOTO(ncclRealloc(&cache->slots, cache->population, cache->capacity), res, returning);
}
// Deregister / register
struct ibv_mr* mr;
unsigned int flags = IBV_ACCESS_LOCAL_WRITE|IBV_ACCESS_REMOTE_WRITE|IBV_ACCESS_REMOTE_READ;
if (ncclIbRelaxedOrderingEnabled) flags |= IBV_ACCESS_RELAXED_ORDERING;
if (fd != -1) {
/* DMA-BUF support */
NCCLCHECKGOTO(wrap_ibv_reg_dmabuf_mr(&mr, verbs->pd, offset, pages*pageSize, addr, fd, flags), res, returning);
} else {
if (ncclIbRelaxedOrderingEnabled) {
// Use IBVERBS_1.8 API - needed for IBV_ACCESS_RELAXED_ORDERING support
NCCLCHECKGOTO(wrap_ibv_reg_mr_iova2(&mr, verbs->pd, (void*)addr, pages*pageSize, addr, flags), res, returning);
}
else {
NCCLCHECKGOTO(wrap_ibv_reg_mr(&mr, verbs->pd, (void*)addr, pages*pageSize, flags), res, returning);
}
}
TRACE(NCCL_INIT,"regAddr %llx size %lld rkey %x fd %d", (unsigned long long)addr, (long long)pages*pageSize, mr->rkey, fd);
cache->population += 1;
cache->slots[slot].addr = addr;
cache->slots[slot].pages = pages;
cache->slots[slot].refs = 1;
cache->slots[slot].mr = mr;
*mhandle = (void*)mr;
res = ncclSuccess;
goto returning;
}
else if (cache->slots[slot].addr == addr && cache->slots[slot].pages == pages) {
cache->slots[slot].refs += 1;
*mhandle = (void*)cache->slots[slot].mr;
res = ncclSuccess;
goto returning;
}
}
returning:
pthread_mutex_unlock(&ncclIbDevs[verbs->dev].lock);
return res;
}

// pin (lock) memory
// 这里的常见错误是 docker container 中 memlock 默认较小, 导致 ibv_reg_mr failed
// https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/troubleshooting.html#infiniband
ncclResult_t ncclIbRegMr(void* comm, void* data, int size, int type, void** mhandle) {
return ncclIbRegMrDmaBuf(comm, data, (size_t)size, type, 0ULL, -1, mhandle);
}

ncclResult_t ncclIbDeregMr(void* comm, void* mhandle) {
struct ncclIbVerbs* verbs = (struct ncclIbVerbs*)comm;
struct ncclIbMrCache* cache = &ncclIbDevs[verbs->dev].mrCache;
ncclResult_t res;
pthread_mutex_lock(&ncclIbDevs[verbs->dev].lock);
for (int i=0; i < cache->population; i++) {
if (mhandle == cache->slots[i].mr) {
if (0 == --cache->slots[i].refs) {
memmove(&cache->slots[i], &cache->slots[--cache->population], sizeof(struct ncclIbMr));
if (cache->population == 0) {
free(cache->slots);
cache->slots = NULL;
cache->capacity = 0;
}
NCCLCHECKGOTO(wrap_ibv_dereg_mr((struct ibv_mr*)mhandle), res, returning);
}
res = ncclSuccess;
goto returning;
}
}
WARN("NET/IB: could not find mr %p inside cache of %d entries", mhandle, cache->population);
res = ncclInternalError;
returning:
pthread_mutex_unlock(&ncclIbDevs[verbs->dev].lock);
return res;
}

ncclResult_t ncclIbMultiSend(struct ncclIbSendComm* comm, int slot) {
struct ncclIbRequest** reqs = comm->fifoReqs[slot];
volatile struct ncclIbSendFifo* slots = comm->fifo[slot];
int nreqs = slots[0].nreqs;
if (nreqs > NCCL_NET_IB_MAX_RECVS) return ncclInternalError;

uint64_t wr_id = 0ULL;

for (int r=0; r<nreqs; r++) {
struct ibv_send_wr* wr = comm->wrs+r;
memset(wr, 0, sizeof(struct ibv_send_wr));

struct ibv_sge* sge = comm->sges+r;
sge->addr=(uintptr_t)reqs[r]->send.data;
sge->lkey=reqs[r]->send.lkey;

wr->opcode = IBV_WR_RDMA_WRITE;
wr->send_flags = 0;
wr->wr.rdma.remote_addr = slots[r].addr;
wr->wr.rdma.rkey = slots[r].rkey;
wr->next = wr+1;
wr_id += (reqs[r] - comm->verbs.reqs) << (r*8);
}

// Write size as immediate data. In the case of multi-send, only write
// 0 or 1 as size to indicate whether there was data sent or received.
uint32_t immData = 0;
if (nreqs == 1) {
immData = reqs[0]->send.size;
} else {
if (nreqs > 32) {
WARN("Cannot store sizes of %d requests in a 32-bits field", nreqs);
return ncclInternalError;
}
for (int r=0; r<nreqs; r++) {
immData |= (reqs[r]->send.size ? 1 : 0) << r;
}
}

struct ibv_send_wr* lastWr = comm->wrs+nreqs-1;
if (nreqs > 1 || reqs[0]->send.size > ncclParamIbArThreshold()) {
// When using adaptive routing, send the bulk of the data first as an
// RDMA_WRITE, then a 0-byte RDMA_WRITE_WITH_IMM to trigger a remote
// completion.
lastWr++;
memset(lastWr, 0, sizeof(struct ibv_send_wr));
}
lastWr->wr_id = wr_id;
lastWr->opcode = IBV_WR_RDMA_WRITE_WITH_IMM;
lastWr->imm_data = immData;
lastWr->next = NULL;
lastWr->send_flags = IBV_SEND_SIGNALED;

// Multi-QP: make sure IB writes are multiples of 128B so that LL and LL128 protocols still work
const int align = 128;
for (int q=0; q<comm->nqps; q++) {
for (int r=0; r<nreqs; r++) {
int chunkSize = DIVUP(DIVUP(reqs[r]->send.size, comm->nqps), align) * align;
int length = std::min(reqs[r]->send.size-reqs[r]->send.offset, chunkSize);
if (length <= 0) {
comm->wrs[r].sg_list = NULL;
comm->wrs[r].num_sge = 0;
} else {
comm->sges[r].length = length;
comm->wrs[r].sg_list = comm->sges+r;
comm->wrs[r].num_sge = 1;
}
}
struct ibv_send_wr* bad_wr;
NCCLCHECK(wrap_ibv_post_send(comm->qps[q], comm->wrs, &bad_wr));

for (int r=0; r<nreqs; r++) {
int chunkSize = DIVUP(DIVUP(reqs[r]->send.size, comm->nqps), align) * align;
reqs[r]->send.offset += chunkSize;
comm->sges[r].addr += chunkSize;
comm->wrs[r].wr.rdma.remote_addr += chunkSize;
}
}

return ncclSuccess;
}

ncclResult_t ncclIbIsend(void* sendComm, void* data, int size, int tag, void* mhandle, void** request) {
struct ncclIbSendComm* comm = (struct ncclIbSendComm*)sendComm;

// 如果未 ready, 则 set up qp
if (comm->ready == 0) NCCLCHECK(ncclSendCheck(comm));
if (comm->ready == 0) { *request = NULL; return ncclSuccess; }

struct ibv_mr* mr = (struct ibv_mr*)mhandle;

// Wait for the receiver to have posted the corresponding receive
int nreqs = 0;
volatile struct ncclIbSendFifo* slots;

int slot = (comm->fifoHead)%MAX_REQUESTS;
struct ncclIbRequest** reqs = comm->fifoReqs[slot];
slots = comm->fifo[slot];
int idx = comm->fifoHead+1;
if (slots[0].idx != idx) { *request = NULL; return ncclSuccess; }
nreqs = slots[0].nreqs;
// Wait until all data has arrived
for (int r=1; r<nreqs; r++) while(slots[r].idx != idx);

__sync_synchronize(); // order the nreqsPtr load against tag/rkey/addr loads below
for (int r=0; r<nreqs; r++) {
if (reqs[r] != NULL || slots[r].tag != tag) continue;

// Sanity checks to catch user collective call count/size mismatches
if (size > slots[r].size) {
char line[SOCKET_NAME_MAXLEN+1];
WARN("NET/IB : req %d/%d tag %x peer %s collective mismatch error, local size %d remote size %d",
r, nreqs, tag, ncclSocketToString(&comm->sock.addr, line), size, slots[r].size);
return ncclInvalidUsage;
} // plus any potential programming errors
else if (slots[r].size < 0 || slots[r].addr == 0 || slots[r].rkey == 0) {
char line[SOCKET_NAME_MAXLEN+1];
WARN("NET/IB : req %d/%d tag %x peer %s posted incorrect receive info: size %d addr %lx rkey %x",
r, nreqs, tag, ncclSocketToString(&comm->sock.addr, line), slots[r].size, slots[r].addr, slots[r].rkey);
return ncclInternalError;
}

// 发送数据

struct ncclIbRequest* req;
NCCLCHECK(ncclIbGetRequest(&comm->verbs, &req));
req->type = NCCL_NET_IB_REQ_SEND;
req->addr = &comm->sock.addr;
req->verbs = &comm->verbs;
req->nreqs = nreqs;
req->send.size = size;
req->send.data = data;
req->send.lkey = mr->lkey;
req->send.offset = 0;
req->addr = &comm->sock.addr;
req->events = comm->nqps;
*request = reqs[r] = req;

// If this is a multi-recv, send only when all requests have matched.
for (int r=0; r<nreqs; r++) {
if (reqs[r] == NULL) return ncclSuccess;
}

TIME_START(0);
NCCLCHECK(ncclIbMultiSend(comm, slot));

// Clear slots[0]->nreqs, as well as other fields to help debugging and sanity checks
memset((void*)slots, 0, sizeof(struct ncclIbSendFifo));
memset(reqs, 0, NCCL_NET_IB_MAX_RECVS*sizeof(struct ncclIbRequest*));
comm->fifoHead++;
TIME_STOP(0);
return ncclSuccess;
}

*request = NULL;
return ncclSuccess;
}

// 发送 fifo; fifo 中提供的是 ncclIbSendFifo, 其中有 rkey, 以及等待数据写入的 mem addr
ncclResult_t ncclIbPostFifo(struct ncclIbRecvComm* comm, int n, void** data, int* sizes, int* tags, void** mhandles, struct ncclIbRequest* req) {
struct ibv_send_wr wr;
memset(&wr, 0, sizeof(wr));

int slot = comm->remFifo.fifoTail%MAX_REQUESTS;
struct ncclIbSendFifo* localElem = comm->remFifo.elems[slot];

for (int i=0; i<n; i++) {
localElem[i].addr = (uint64_t)data[i];
struct ibv_mr* mr = (struct ibv_mr*)mhandles[i];
localElem[i].rkey = mr->rkey;
localElem[i].nreqs = n;
localElem[i].size = sizes[i]; // Sanity/Debugging
localElem[i].tag = tags[i];
localElem[i].idx = comm->remFifo.fifoTail+1;
}

wr.wr.rdma.remote_addr = comm->remFifo.addr + slot*NCCL_NET_IB_MAX_RECVS*sizeof(struct ncclIbSendFifo);
wr.wr.rdma.rkey = comm->remFifo.rkey;
comm->remFifo.sge.addr = (uint64_t)localElem;
comm->remFifo.sge.length = n*sizeof(struct ncclIbSendFifo);
wr.sg_list = &comm->remFifo.sge;
wr.num_sge = 1;
wr.opcode = IBV_WR_RDMA_WRITE;
wr.send_flags = comm->remFifo.flags; // IBV_SEND_INLINE

// We need to occasionally post a request with the IBV_SEND_SIGNALED flag, otherwise
// the send queue will never empty.
//
// From https://www.rdmamojo.com/2014/06/30/working-unsignaled-completions/
// "How to use Unsignaled Completion?" / "Gotchas and Pitfalls"
// All posted Send Requested, Signaled and Unsignaled, are considered outstanding until
// a Work Completion that they, or Send Requests that were posted after them, was polled
// from the Completion Queue associated with the Send Queue. This means if one works with
// a Queue Pair that was configured to work with Unsignaled Completions, he must make
// sure that occasionally (before the Send Queue is full with outstanding Send Requests)
// a Send Request that generate Work Completion will be posted.
//
// Not following this rule may lead to a case that the Send Queue is full with Send
// Requests that won't generate Work Completion:
//
// - The Send Queue is full, so no new Send Requests can be posted to it 发送队列满了, 那么就没法发一个能生成 work completion 的 send request 了
// - The Send Queue can't be emptied, since no Work Completion can be generated anymore
// (the reason is that no Work Completion, that can generate Work Completion that
// polling it will empty the Send Queue, can be posted)
// - The status of all posted Send Request is considered unknown
//

// 所有已发送的 signaled/unsignaled send request, 都被认为是未完成的. 他们什么时候算是完成的 ?在他们之后发送的 send requests 从
// 关联着 send queue 的 completion queue 被轮询到后

// 说的有点儿绕, 其实核心表达的是这篇材料里边有个 case https://www.openfabrics.org/images/eventpresos/workshops2013/IBUG/2013_UserDay_Thur_1400_Bob-Russell-programming-concepts.pdf
// rdma ping pong 的例子,核心表达的意思是 write 可以不用 signal 是否完成, 因为 client 侧 write 之后, 随后直接 read, 可以直接等 read 的 cq, 如果 read cq 报错, 如果是之前的 write 报错,
// 那么等 read 的 cq, 也会返回相应的报错信息
//
// 也就是说如果 send with unsignaled completions, 怎么确认 send 完成了, 一定需要不时的, 注意要在 send queue 未被未完成的 send requests 占满之前,
// 发送一个能生成 work completion 的 send request
//
// 不按上边来的话, 可能会出现 send queue 里边的 send requests 都不会产生 work compeltion, 具体来说可能会出现如下现象
// 1. send queue 满, 新的请求无法发送
// 2. send queue 无法为空, 因为没有请求会生成 work competion, 所以也就无法从 send queue 里边清数据. 其实这点和 3 相关, 说的是一个意思
// 3. 所有已发送的请求, 状态未知.
//

// 所以在 NCCL 这里的实现上 slot 0 的数据使用 signaled, 而其他 slot 的数据使用 unsignaled 发送
if (slot == 0) {
wr.send_flags |= IBV_SEND_SIGNALED;
wr.wr_id = req - comm->verbs.reqs;
req->events++;
}

struct ibv_send_wr* bad_wr;
NCCLCHECK(wrap_ibv_post_send(comm->qps[0], &wr, &bad_wr));
comm->remFifo.fifoTail++;

return ncclSuccess;
}

ncclResult_t ncclIbIrecv(void* recvComm, int n, void** data, int* sizes, int* tags, void** mhandles, void** request) {
struct ncclIbRecvComm* comm = (struct ncclIbRecvComm*)recvComm;
if (comm->ready == 0) NCCLCHECK(ncclRecvCheck(comm));
if (comm->ready == 0) { *request = NULL; return ncclSuccess; }
if (n > NCCL_NET_IB_MAX_RECVS) return ncclInternalError;

struct ncclIbRequest* req;
NCCLCHECK(ncclIbGetRequest(&comm->verbs, &req));
req->type = NCCL_NET_IB_REQ_RECV;
req->addr = &comm->sock.addr;
req->nreqs = n;
for (int i=0; i<n; i++) req->recv.sizes[i] = 0;

struct ibv_recv_wr wr;
memset(&wr, 0, sizeof(wr));
wr.wr_id = req - comm->verbs.reqs;

wr.sg_list = NULL;
wr.num_sge = 0;

TIME_START(1);
for (int q=0; q<comm->nqps; q++) {
struct ibv_qp* qp = comm->qps[q];
struct ibv_recv_wr* bad_wr;
NCCLCHECK(wrap_ibv_post_recv(qp, &wr, &bad_wr));
}
TIME_STOP(1);
req->events = comm->nqps;

*request = req;

// Post to FIFO to notify sender
TIME_START(2);
NCCLCHECK(ncclIbPostFifo(comm, n, data, sizes, tags, mhandles, req));
TIME_STOP(2);
return ncclSuccess;
}

// 由前边的代码可知, ib flush 逻辑用于 gdr flush, 默认开启
ncclResult_t ncclIbIflush(void* recvComm, int n, void** data, int* sizes, void** mhandles, void** request) {
struct ncclIbRecvComm* comm = (struct ncclIbRecvComm*)recvComm;
int last = -1;
for (int i=0; i<n; i++) if (sizes[i]) last = i;
if (comm->gpuFlush.enabled == 0 || last == -1) return ncclSuccess;

// Only flush once using the last non-zero receive
struct ncclIbRequest* req;
NCCLCHECK(ncclIbGetRequest(&comm->verbs, &req));
req->type = NCCL_NET_IB_REQ_FLUSH;
req->addr = &comm->sock.addr;
struct ibv_mr* mr = (struct ibv_mr*)mhandles[last];

struct ibv_send_wr wr;
memset(&wr, 0, sizeof(wr));
wr.wr_id = req - comm->verbs.reqs;

wr.wr.rdma.remote_addr = (uint64_t)data[last];
wr.wr.rdma.rkey = mr->rkey;
wr.sg_list = &comm->gpuFlush.sge;
wr.num_sge = 1;
wr.opcode = IBV_WR_RDMA_READ;
wr.send_flags = IBV_SEND_SIGNALED;

TIME_START(4);
struct ibv_send_wr* bad_wr;
NCCLCHECK(wrap_ibv_post_send(comm->gpuFlush.qp, &wr, &bad_wr));
TIME_STOP(4);

*request = req;
return ncclSuccess;
}

// 确认数据收发是否完成
// 这里的常见错误是网络故障
// NCCL WARN NET/IB : Got completion with error 12, opcode 0, len 0, vendor err 129
// IBV_WC_RETRY_EXC_ERR (12) - Transport Retry Counter Exceeded: The local transport timeout retry counter was exceeded while trying to send this message. This means that the remote side didn't send any Ack or Nack. If this happens when sending the first message, usually this mean that the connection attributes are wrong or the remote side isn't in a state that it can respond to messages. If this happens after sending the first message, usually it means that the remote QP isn't available anymore. Relevant for RC QPs.
// https://github.com/NVIDIA/nccl/issues/426
// 如果是训练启动时就报 error 12, 那多半是 qp 参数配置问题; 如果是训练过程中报错, 有可能是代码问题, 若相信 NCCL 的代码质量, 那当然更大概率是网络问题, 比如 roce v2 网络下, 对端网卡, 或者是交换机出现丢包, 导致一直未回复 ack, 最终导致超时发生
ncclResult_t ncclIbTest(void* request, int* done, int* sizes) {
struct ncclIbRequest *r = (struct ncclIbRequest*)request;
*done = 0;

while (1) {
if (r->events == 0) {
*done = 1;
if (sizes && r->type == NCCL_NET_IB_REQ_RECV) {
for (int i=0; i<r->nreqs; i++) sizes[i] = r->recv.sizes[i];
}
NCCLCHECK(ncclIbFreeRequest(r));
return ncclSuccess;
}

int wrDone = 0;
struct ibv_wc wcs[4];
TIME_START(3);
NCCLCHECK(wrap_ibv_poll_cq(r->verbs->cq, 4, wcs, &wrDone));
if (wrDone == 0) { TIME_CANCEL(3); } else { TIME_STOP(3); }
if (wrDone == 0) return ncclSuccess;

for (int w=0; w<wrDone; w++) {
struct ibv_wc *wc = wcs+w;

// https://www.rdmamojo.com/2013/02/15/ibv_poll_cq/
// Not all wc attributes are always valid. If the completion status is other than IBV_WC_SUCCESS, only the following attributes are valid:
// wr_id
// status
// qp_num
// vendor_err

if (wc->status != IBV_WC_SUCCESS) {
char line[SOCKET_NAME_MAXLEN+1];
WARN("NET/IB : Got completion from peer %s with error %d, opcode %d, len %d, vendor err %d",
ncclSocketToString(r->addr, line), wc->status, wc->opcode, wc->byte_len, wc->vendor_err); // 这里增加打印 qp num 会更方便 trace
return ncclRemoteError;
}

struct ncclIbRequest* req = r->verbs->reqs+(wc->wr_id & 0xff);
if (req->type == NCCL_NET_IB_REQ_SEND) {
for (int i=0; i<req->nreqs; i++) {
struct ncclIbRequest* sendReq = r->verbs->reqs+((wc->wr_id >> (i*8)) & 0xff);
if ((sendReq->events <= 0)) return ncclInternalError;
sendReq->events--;
}
} else {
if (req && wc->opcode == IBV_WC_RECV_RDMA_WITH_IMM) {
if (req->type != NCCL_NET_IB_REQ_RECV) return ncclInternalError;
if (req->nreqs > 1) {
// In the case of a multi recv, we only set sizes to 0 or 1.
for (int i=0; i<req->nreqs; i++) {
req->recv.sizes[i] = (wc->imm_data >> i) & 0x1;
}
} else {
req->recv.sizes[0] += wc->imm_data;
}
}
req->events--;
}
}
}
}

ncclResult_t ncclIbCloseSend(void* sendComm) {
struct ncclIbSendComm* comm = (struct ncclIbSendComm*)sendComm;
if (comm) {
close(comm->sock.fd);
for (int q=0; q<comm->nqps; q++)
if (comm->qps[q] != NULL) NCCLCHECK(wrap_ibv_destroy_qp(comm->qps[q]));
if (comm->fifoMr != NULL) NCCLCHECK(wrap_ibv_dereg_mr(comm->fifoMr));
NCCLCHECK(ncclIbDestroyVerbs(&comm->verbs));
free(comm);
}
TIME_PRINT("IB");
return ncclSuccess;
}

ncclResult_t ncclIbCloseRecv(void* recvComm) {
struct ncclIbRecvComm* comm = (struct ncclIbRecvComm*)recvComm;
if (comm) {
close(comm->sock.fd);
for (int q=0; q<comm->nqps; q++)
if (comm->qps[q] != NULL) NCCLCHECK(wrap_ibv_destroy_qp(comm->qps[q]));
if (comm->gpuFlush.enabled) {
if (comm->gpuFlush.qp != NULL) NCCLCHECK(wrap_ibv_destroy_qp(comm->gpuFlush.qp));
if (comm->gpuFlush.hostMr != NULL) NCCLCHECK(wrap_ibv_dereg_mr(comm->gpuFlush.hostMr));
}
if (comm->remFifo.mr != NULL) NCCLCHECK(wrap_ibv_dereg_mr(comm->remFifo.mr));
NCCLCHECK(ncclIbDestroyVerbs(&comm->verbs));
free(comm);
}
return ncclSuccess;
}

ncclResult_t ncclIbCloseListen(void* listenComm) {
struct ncclIbListenComm* comm = (struct ncclIbListenComm*)listenComm;
if (comm) {
close(comm->sock.fd);
free(comm);
}
return ncclSuccess;
}

ncclNet_t ncclNetIb = {
"IB",
ncclIbInit,
ncclIbDevices,
ncclIbGetProperties,
ncclIbListen,
ncclIbConnect,
ncclIbAccept,
ncclIbRegMr,
ncclIbRegMrDmaBuf,
ncclIbDeregMr,
ncclIbIsend,
ncclIbIrecv,
ncclIbIflush,
ncclIbTest,
ncclIbCloseSend,
ncclIbCloseRecv,
ncclIbCloseListen
};